Comparative dynamics of female germ cell populations : insight from imaging and multiscale modeling

Frédérique Clément, Romain Yvinec

Journées INRAE-INRIA, 04-05 Juillet 2023

Collaborative background Biological background Available and future data Modeling questions and approaches

Collaborative background

⊙ EPC CNRS-INRAE-INRIA MUSCA

MUltiSCAle population dynamics for physiological systems CRI Saclay – MaiAGE – PRC

⊙ Projet GinFiz ANSES 2020

Gonadal aromatase inhibition and other toxicity pathways leading to Fecundity Inhibition in Zebrafish: from initiating events to population impacts collaboration INERIS (Rémy Beaudouin) + Laboratoire de Physiologie et Génomique des Poissons (LPGP, Violette Thermes)

⊙ Projet IMMO Digit-Bio INRAE 2021

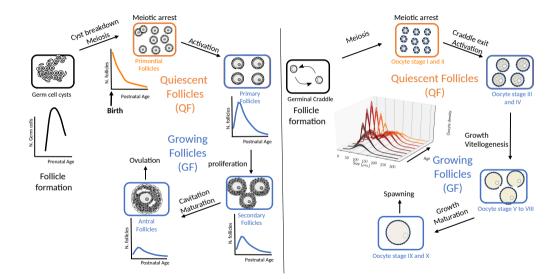
Imagerie et modélisation multi-échelles pour la compréhension de la dynamique ovarienne chez le poisson collaboration LPGP

○ AAPG ANR CES 45 OVOPAUSE 2022

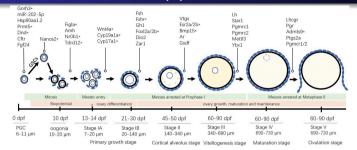
Dynamics and regulation of female germ cell populations: understanding aging through population dynamics models

collaboration LPGP + INSERM

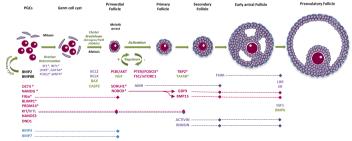
Comparative vertebrate oogenesis (1)



Comparative vertebrate oogenesis (2)



Li & Ge Mol. Cell. Endocrinol. 2020



Sánchez & Smith Acta Bioch. Biophys. 2012

Population scale

- $\odot\,$ Kinetics of oocyte pool exhaustion / intensity of oocyte pool renewal
- Shaping of the oocyte (size/maturation) distribution
- Contribution of direct and indirect interactions within the oocyte population Management of oocyte resources / Driving of ovarian cyclicity

Oocyte/follicle scale

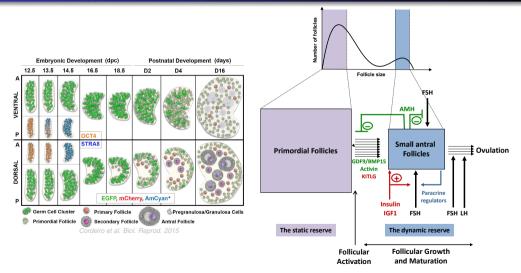
- $\odot\;$ Coupled dynamics between germ cells and somatic cells
- $\odot\,$ Mechanisms underlying the proper sequence of morphogenetic events

Preserving the ovarian resources

- \odot Ovarian aging
- Reproductive fitness

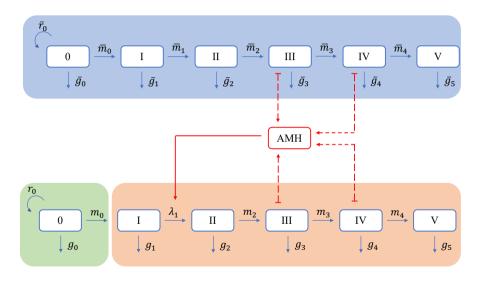
Knowledge driven modeling approaches (Mammals)

Embedding cell biology/developmental biology/endocrine information



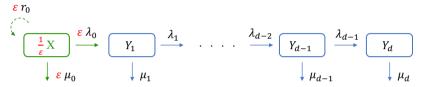
Knowledge driven modeling approaches (Mammals)

Embedding cell biology/developmental biology/endocrine information



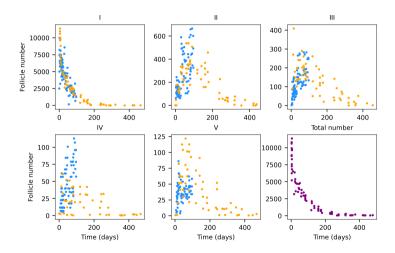
Stochastic compartmental population dynamics

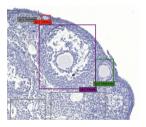
Multiple timescales and order of magnitudes \Rightarrow Model reduction



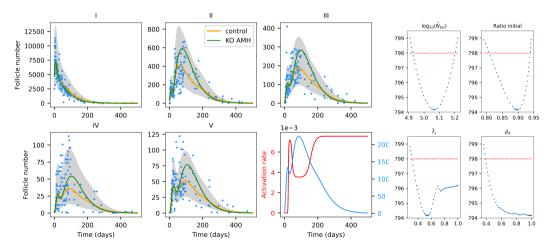
	Transition	Rate
Birth (reserve)	$\left(X^arepsilon,Y^arepsilon ight) ightarrow \left(X^arepsilon+arepsilon,Y^arepsilon ight)$	$rac{r_0(Y^{\varepsilon})}{arepsilon}X^{arepsilon}$
Maturation (reserve)	$\left(X^{arepsilon},Y^{arepsilon} ight) ightarrow \left(X^{arepsilon}-arepsilon,Y^{arepsilon}+e_{1} ight)$	$rac{\lambda_0(Y^arepsilon)}{arepsilon}X^arepsilon$
Death (reserve)	$\left(X^arepsilon,Y^arepsilon ight) ightarrow \left(X^arepsilon-arepsilon,Y^arepsilon ight)$	$rac{\mu_0(Y^{arepsilon})}{arepsilon}X^{arepsilon}$
Maturation, $i \in \llbracket 1, d - 1 \rrbracket$	$\left(X^{\varepsilon},Y^{\varepsilon} ight) ightarrow\left(X^{\varepsilon},Y^{\varepsilon}-e_{i}+e_{i+1} ight)$	$rac{\lambda_i(Y^{\varepsilon})}{arepsilon} Y_i^{arepsilon}$
Death, $i \in \llbracket 1, d rbracket$	$\left(X^{\varepsilon},Y^{\varepsilon} ight) ightarrow\left(X^{\varepsilon},Y^{\varepsilon}-e_{i} ight)$	$\frac{\mu_i(Y^{\varepsilon})}{\varepsilon}Y_i^{\varepsilon}$

Data-driven parameter estimation : low-throughput data





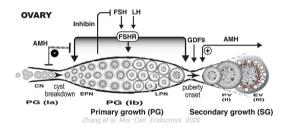
Data-driven parameter estimation : low-throughput data

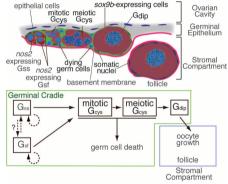


Model selection, parameter identifiability, perturbation prediction

Knowledge driven modeling approaches (Fish)

Embedding cell biology/developmental biology/endocrine information

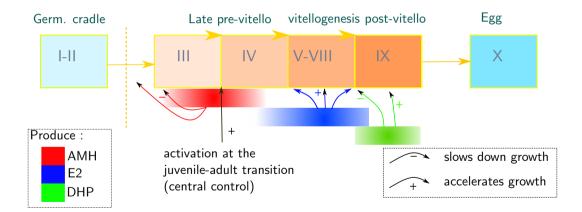




Nakamura et al. Science 2010

Knowledge driven modeling approaches (Fish)

Embedding cell biology/developmental biology/endocrine information



Deterministic size-structured population dynamics

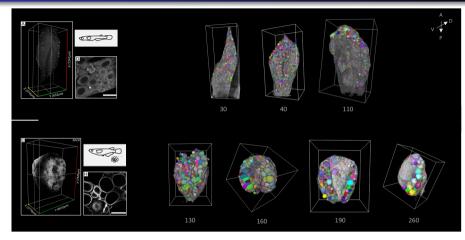
Nonlinear conservation laws: numerical scheme and asymptotic behavior

Parameters	Interpretation	Output	Interpretation
λ_0	Cradle exit rate	$ ho_0$	number of cells in the cradle
r_0	Cradle renewal rate	ρ	size density from stage III to IX
λ	growth speed from stage III to IX	ρ_1	number of stage X oocytes
W_i	"quantity" of hormone i secreted		

$$\begin{array}{l} \frac{d}{dt}\rho_0(t)=r_0(\rho_0)\rho_0(t)-\lambda_0(W_{AMH}(t))\rho_0(t), \ t>0\\ \lim_{x\to 0}(\lambda\rho)=\lambda_0\rho_0(t), \ \ \text{sur} \ [0,+\infty)\\ \partial_t\rho+\partial_x\left(\lambda(x,W_{AMH},W_{E2},W_{DHP})\rho\right)=0, \ \ x\in[0,1], \ t>0\\ \frac{d}{dt}\rho_1(t)=\lim_{x\to 1}(\lambda\rho)-\text{spawn}(t), \ t>0\\ W_i(t)=\int_0^1\omega_i(x)\rho(t,x)\mathrm{d}x, \ \ i\in\{AMH,E2,DHP\} \end{array}$$

Data-driven parameter estimation : DL-based data extraction

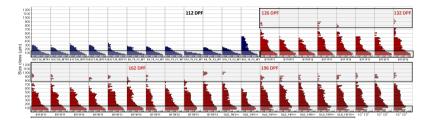
Work of Violette Thermes and collaborators

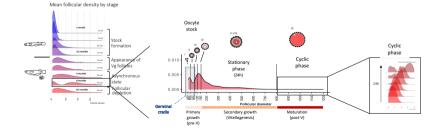


Inputs : 3D ovarian imaging / Automatic follicle segmentation and classification Outputs : age/space-varying distribution in size/class of the total population of ovarian follicles

Data-driven parameter estimation : DL-based data extraction

Work of Violette Thermes and collaborators



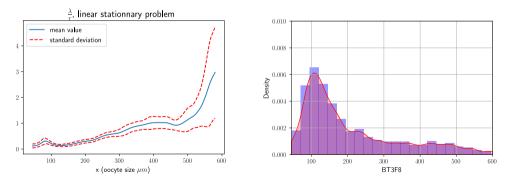


Data-driven parameter estimation

Nonparametric inverse problem on stationary state

$$ar{
ho}(0)=r \ \partial_x\left(\lambda(x)ar{
ho}
ight)=0, \ \ x\in[0,1]$$

Hormonal interactions cannot be deduced from purely stationary data, yet we can infer the size-dependent oocyte growth speed.



Ongoing/ future directions

Stochastic and deterministic models of structured populations with nonlinear and nonlocal terms

- \odot Wellposedness / stationary solutions
- Inverse problems
- Structuring variable(s) Coupling with cell dynamics models on the single-follicle level Spatial distribution
- Physics-based modeling (morphogenesis)

